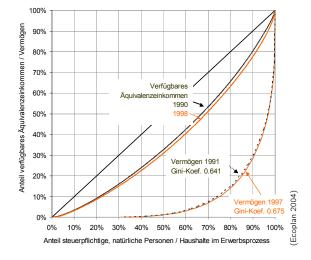
Assessing inequality using percentile shares An application to Swiss tax data

Ben Jann

University of Bern, ben.jann@soz.unibe.ch

Seminar at the Institute of Social and Preventive Medicine (ISPM)
University of Bern, April 28, 2016



- ▶ http://www.youtube.com/watch?v=slTF_XXoKAQ
- https://www.ted.com/talks/dan_ariely_how_equal_do_we_ want_the_world_to_be_you_d_be_surprised

Outline

- Motivation
- Estimation of percentile shares
- The pshare Stata command
- Examples
- Small sample bias

Estimation of percentile shares

- Outcome variable of interest, e.g. income: Y
- Distribution function: $F(y) = Pr\{Y \le y\}$
- Quantile function: $Q(p) = F^{-1}(p) = \inf\{y | F(y) \ge p\}, p \in [0, 1]$
- Lorenz ordinates:

$$L(p) = \int_{-\infty}^{Q_p} y \, dF(y) / \int_{-\infty}^{\infty} y \, dF(y)$$

• Finite population form:

$$L(p) = \sum_{i=1}^{N} y_i \mathcal{I}\{y_i \leq Q_p\} / \sum_{i=1}^{N} y_i$$

• Percentile share: proportion of total outcome within quantile interval $[Q_{p_{\ell-1}}, Q_{p_{\ell}}], p_{\ell-1} \leq p_{\ell}$

$$S_{\ell} = L(p_{\ell}) - L(p_{\ell-1})$$

Estimation of percentile shares

• Estimation given sample of size *n*:

$$\begin{split} \widehat{S}_{\ell} &= \widehat{L}(p_{\ell}) - \widehat{L}(p_{\ell-1}) \\ \widehat{L}(p) &= (1 - \gamma)\widetilde{Y}_{j-1} + \gamma\widetilde{Y}_{j} \quad \text{where } \widehat{p}_{j-1}$$

- Standard errors
 - ▶ approximate standard errors can be obtained by the estimating equations approach as proposed by Binder and Kovacevic (1995)
 - supports complex survey data and joint estimation across subpopulations or repeated measures
 - ► alternative: bootstrap

Estimation of percentile shares: standard errors

• Let θ be a parameter interest and λ be a vector of nuisance parameters. Furthermore, let $u_{\theta}(y_i, \theta, \lambda)$ and $u_{\lambda}(y_i, \lambda)$ be estimating functions such that, in the (finite) population, θ and λ are the solutions to

$$U_{\theta}(\theta, \lambda) = \sum_{i=1}^{N} u_{\theta}(y_i, \theta, \lambda) = 0$$
 and $U_{\lambda}(\lambda) = \sum_{i=1}^{N} u_{\lambda}(y_i, \lambda) = 0$

• Following Kovacević and Binder (1997), the sampling variance of $\hat{\theta}$ can be approximated by a variance estimate of

$$\sum_{s} w_{i} u^{*}(y_{i}, \hat{\theta}, \hat{\lambda})$$

where w_i are sampling weights and

$$u^*(y_i, \theta, \lambda) = \left(-u_{\theta}(y_i, \theta, \lambda) + \frac{\partial U_{\theta}}{\partial \lambda} \left[\frac{\partial U_{\lambda}}{\partial \lambda}\right]^{-1} u_{\lambda}(y_i, \lambda)\right) \left[\frac{\partial U_{\theta}}{\partial \theta}\right]^{-1}$$

Estimation of percentile shares: standard errors

- For percentile shares, $\theta = S$ and $\lambda = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}$.
- The estimating functions are:

$$u_{\theta} = y_{i} \mathcal{I} \{ y_{i} \leq Q_{2} \} - y_{i} \mathcal{I} \{ y_{i} \leq Q_{1} \} - y_{i} S$$

$$u_{\lambda} = \begin{bmatrix} \mathcal{I} \{ y_{i} \leq Q_{1} \} - p_{1} \\ \mathcal{I} \{ y_{i} \leq Q_{2} \} - p_{2} \end{bmatrix}$$

• Hence:

$$u^* = \frac{y_i \mathcal{I}\{y_i \leq Q_2\} - y_i \mathcal{I}\{y_i \leq Q_1\} - y_i S}{-Q_2(\mathcal{I}\{y_i \leq Q_2\} - p_2) + Q_1(\mathcal{I}\{y_i \leq Q_1\} - p_1)}{\sum y_i}$$
$$= \frac{(y_i - Q_2)\mathcal{I}\{y_i \leq Q_2\} - (y_i - Q_1)\mathcal{I}\{y_i \leq Q_1\}}{+Q_2p_2 - Q_1p_1 - y_i S}$$
$$= \frac{-Q_2p_2 - Q_1p_1 -$$

Estimation of percentile shares: some extensions

- Percentile share "density":
 - particularly useful for graphing

$$D_{\ell} = \frac{S_{\ell}}{p_{\ell} - p_{\ell-1}} = \frac{L(p_{\ell}) - L(p_{\ell-1})}{p_{\ell} - p_{\ell-1}}$$

Totals:

$$T_{\ell} = \sum_{i=1}^{N} y_i \mathcal{I}\{Q_{p_{\ell-1}} < y_i \le Q_{p_{\ell}}\} = S_{\ell} \cdot \sum_{i=1}^{N} y_i$$

- Averages:
 - again, useful for graphing
 - useful if you are also interested in levels, not just distribution

$$A_{\ell} = \frac{T_{\ell}}{(p_{\ell} - p_{\ell-1}) \cdot N}$$

Estimation of percentile shares: some extensions

- Contrasts:
 - useful for comparing distributions, e.g. changes over time
 - standard errors easily computed using delta method

$$S_{\ell}^A - S_{\ell}^B$$
 S_{ℓ}^A / S_{ℓ}^B $\ln(S_{\ell}^A / S_{\ell}^B)$...

- Renormalization (using a different total):
 - useful, e.g., to analyze income components or subpopulation shares

$$L^*(p) = \sum_{i=1}^{N} y_i \mathcal{I}\{y_i \le Q_p\} / T$$
$$S_{\ell}^* = L^*(p_{\ell}) - L^*(p_{\ell-1})$$

with T whatever you like it to be (e.g. the total of variable Z or the total across subpopulations)

Estimation of percentile shares: some extensions

- Concentration shares:
 - compute shares while ordering by a different variable
 - useful for analyzing relations between variables (wealth and income, pre- and post-tax income, etc.)

$$L^{Z}(p) = \sum_{i=1}^{N} y_{i} \mathcal{I}\{z_{i} \leq Q_{p}^{Z}\} / \sum_{i=1}^{N} y_{i}$$
$$S_{\ell}^{Z} = L^{Z}(p_{\ell}) - L^{Z}(p_{\ell-1})$$

• Often a combination of renormalization and using a different ordering variable is useful (e.g. to analyze redistribution).

The pshare Stata command

- pshare estimate
 - estimates the percentile shares and their variance matrix
 - arbitrary cutoffs for the percentile groups
 - ▶ joint estimation across multiple outcome variables or subpopulations
 - shares as proportions, densities, totals, or averages
 - etc.
- pshare contrast
 - computes contrasts between outcome variables or subpopulations
 - ▶ differences, ratios, or log ratios
- pshare stack
 - displays percentile shares as stacked bar chart
- pshare histogram
 - displays percentile shares as histogram

Example: quintile shares (the default)

```
. sysuse nlsw88
(NLSW, 1988 extract)
```

. pshare estimate wage, percent

Percentile shares (percent)

Number of obs =

2,246

wage	Coef.	Std. Err.	[95% Conf. Interval]
0-20	8.018458	. 1403194	7.743288 8.293627
20-40	12.03655	. 1723244	11.69862 12.37448
40-60	16.2757	.2068139	15.87013 16.68127
60-80	22.47824	. 2485367	21.99085 22.96562
80-100	41.19106	.6246426	39.96612 42.41599

- top 20% percent of the population get 41% of wages
- bottom 20% only get 8% of wages, etc.

Example: bottom 50%, mid 40%, and top 10%

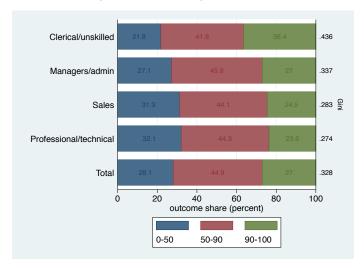
. pshare estimate wage, percent percentiles(50 90) Percentile shares (percent) Number of obs =

2,246

wage	Coef.	Std. Err.	[95% Conf.	Interval]
0-50	27.59734	.3742279	26.86347	28.33121
50-90	45.86678	.4217771	45.03967	46.6939
90-100	26.53588	.682887	25.19672	27.87503

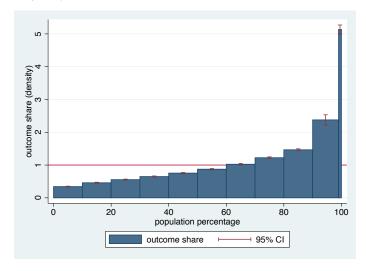
Example: stacked bars plot

- . pshare estimate wage if occ<=4, percent p(50 90) over(occ) total gini (output omitted)
- . pshare stack, values sort(gini tlast descending)



Example: histogram of densities

- . pshare estimate wage, density percentiles(10(10)90 99)
 (output omitted)
- . pshare histogram, yline(1)



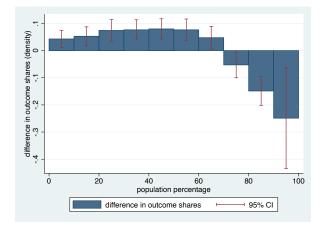
Example: histogram of densities

Interpretation

- Take 100 dollars and divide them among 100 people who line up along the x-axis.
- ▶ The heights of the bars shows you how much each one gets.
- ▶ If all get the same, then everyone would get one dollar (red line).
- ▶ However, according to the observed distribution, the rightmost person would get five of the 100 dollars, the next 9 would get about two and a half dollars each, . . . , the bottom 10 only get 35 cents each.

Example: contrasts

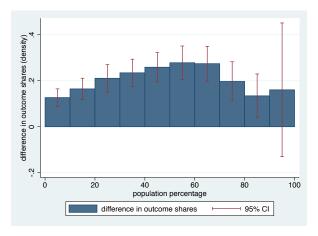
- . quietly pshare estimate wage, n(10) density over(union)
- . quietly pshare contrast 0
- . pshare histogram



• bottom 70% percent are relatively better off if unionized

Example: contrasts

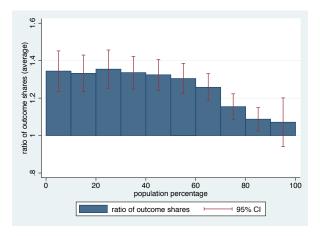
. pshare estimate wage, n(10) density over(union) contrast(0) normalize(0:) histogram (output omitted)



• everyone is *absolutely* better off if unionized (between about 15% and 25% of average nonunion wages)

Example: contrasts

. pshare estimate wage, n(10) average over(union) contrast(0, ratio) histogram (output omitted)



• bottom 50% of unionized are about 30% better off than bottom 50% of nonunionized; at the top the advantage shrinks to 10%

Example: concentration shares

. pshare estimate hours, n(10) density pvar(wage)

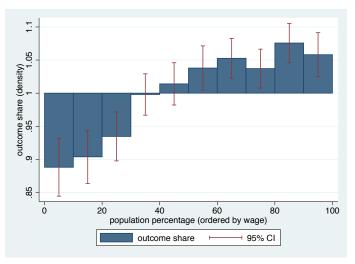
Percentile shares (density) Number of obs = 2,242

hours	Coef.	Std. Err.	[95% Conf. Interval]
0-10	.8880782	.0222773	.8443919 .9317646
10-20	.9038126	.0205245	.8635637 .9440616
20-30	. 934641	.0188478	.8976801 .971602
30-40	.9980166	.0159431	.9667519 1.029281
40-50	1.014016	.0162895	.9820715 1.04596
50-60	1.037906	.0170757	1.00442 1.071392
60-70	1.052623	.0153487	1.022524 1.082722
70-80	1.037115	.0149871	1.007725 1.066505
80-90	1.075704	.0151754	1.045945 1.105464
90-100	1.058088	.0169731	1.024803 1.091372

(percentile groups with respect to wage)

[.] pshare histogram, base(1)

Example: concentration shares



- the 10% with the highest wages work 5.8% longer hours
- the 10% with the lowest wages work 11.2% shorter hours

Some examples with "real" data

- Tax data from canton of Bern, Switzerland, 2002 and 2012
- individual level data from personal tax forms
- information on income components, deductions, assets, etc.
- units of analysis in following examples are "tax units"

. describe

Contains data from BE-02-12.dta

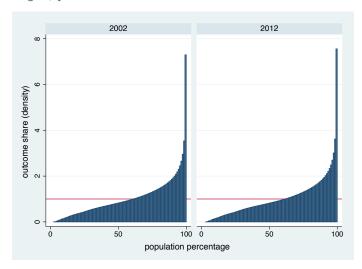
obs: 1,153,709 vars: 10 size: 48,455,778

28 Apr 2016 15:17

variable name	storage type	display format	value label	variable label
	-7 F -			
year	int	%9.0g		Year
hhid	double	%10.0g		Household ID
earnings	float	%9.0g		Labor market income
capincome	float	%9.0g		Capital income
transfers	float	%9.0g		Transfer income
tax	float	%9.0g		Tax
heritage	long	%10.0gc		Received heritage
income	float	%9.0g		Total income
aftertax	float	%9.0g		After tax income
wealth	float	%9.0g		Net wealth

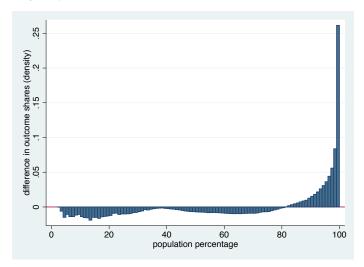
Distribution of total income in 2002 and 2012

- . pshare estimate income, n(100) nose density over(year)
 (output omitted)
- . pshare histogram, yline(1)



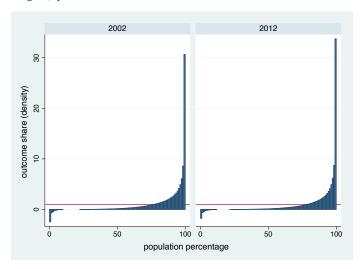
Change in income distribution from 2002 to 2012

- . pshare contrast
 (output omitted)
- . pshare histogram, yline(0)



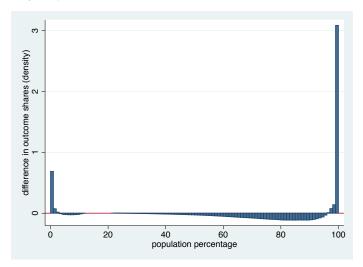
Distribution of net wealth in 2002 and 2012

- . pshare estimate wealth, n(100) nose density over(year)
 (output omitted)
- . pshare histogram, yline(1)



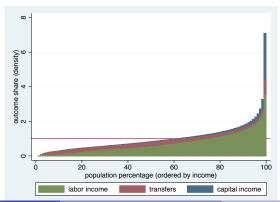
Change in wealth distribution from 2002 to 2012

- . pshare contrast
 (output omitted)
- . pshare histogram, yline(0)



Income composition by income percentiles (2012)

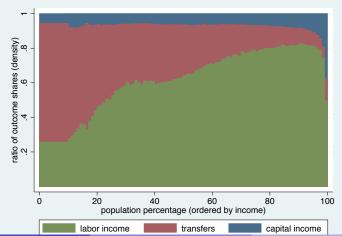
```
(553,976 observations deleted)
. drop year
. drop if hhid>=.
(11,720 observations deleted)
. collapse (sum) earnings-wealth, by(hhid) fast // generate households
. generate earn_trans = earnings + transfers
. quietly pshare estimate income earn_trans earnings, n(100) nose density ///
> pvar(income) normalize(income)
. pshare histogram, overlay yline(1) fintensity(100) color(*.8) ///
> levend(order(3 "labor income" 2 "transfers" 1 "capital income") rows(1))
```



. keep if vear==2012

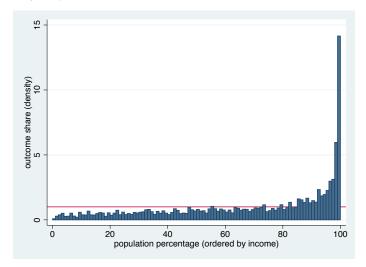
Income composition in relative terms (2012)

```
generate earn_trans_cap = income
  quietly pshare estimate income earn_trans_cap earn_trans earnings, ///
  p(10(1)99) nose density pvar(income) normalize(income)
  quietly pshare contrast income, ratio
  pshare histogram, overlay finten(100) color(*.8) base(0) ///
  legend(order(3 "labor income" 2 "transfers" 1 "capital income") rows(1))
```



Received heritage by income percentiles (2012)

- . quietly pshare estimate heritage, n(100) nose density pvar(income)
 (output omitted)
- . pshare histogram, yline(1)

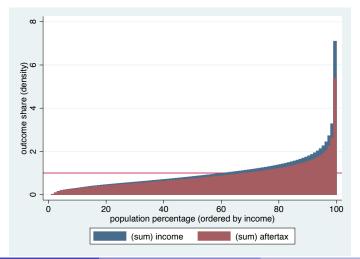


Pre-tax and post-tax income (2012)

- . quietly pshare estimate income aftertax, n(100) nose density normalize(income) > pvar(income)
- · pvar (11100110)

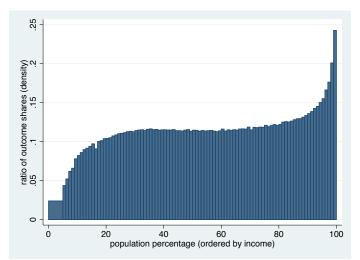
(output omitted)

. pshare histogram, yline(1) overlay finten(100) $\operatorname{color}(*.8)$



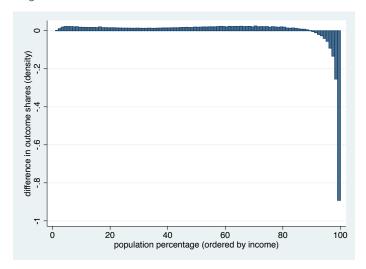
Tax rate by income percentiles (2012)

- . quietly pshare estimate income tax, p(5(1)99) nose density ///
 > normalize(income) pvar(income)
- . quietly pshare contrast income, ratio
- . pshare histogram, base(0) ylabel(0(.05).25)



"Winners" and "losers" from taxation (2012)

- . quietly pshare estimate income aftertax, n(100) nose density pvar(income)
- . quietly pshare contrast income
- . pshare histogram

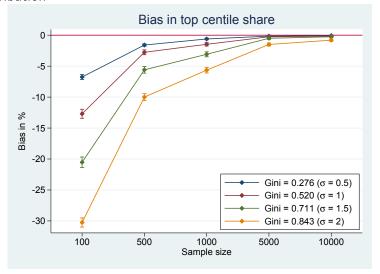


Small sample bias

- Percentile shares are affected by small sample bias.
- The top percentile share is typically underestimated.
- The problem is difficult to fix.
 - ▶ Corrections could be derived based on parametric assumptions.
 - ► Smoothing out the data by adding random noise can be an option, but this also requires parametric assumptions.
 - ▶ I evaluated a non-parametric small-sample correction using a bootstrap approach: the bias in bootstrap samples is used to derive correction factors for the main results.
 - ► This works very well in terms of removing bias (unless the distribution is extremely skewed).
 - ▶ **However:** MSE increases compared to uncorrected results!
 - Any ideas? Can Extreme Value Estimation be used to improve the estimates? Or would it be better to leave the point estimates as is and focus on obtaining bias-corrected Cls that have the correct size?

Small sample bias: how bad is the problem?

• Simulation: relative bias in top 1% share using a log-normal distribution



Software and paper

- Software:
 - . ssc install pshare
- Paper (forthcoming in the Stata Journal):
 - ▶ Jann, Ben. 2015. Assessing inequality using percentile shares. University of Bern Social Sciences Working Papers No. 13. https://ideas.repec.org/p/bss/wpaper/13.html

Lorenz curves

• Should you still be attached to Lorenz curves/concentration curves, I wrote a companion command with similar functionality:

. ssc install lorenz

• Paper:

▶ Jann, Ben. 2016. Estimating Lorenz and concentration curves in Stata. University of Bern Social Sciences Working Papers No. 15. https://ideas.repec.org/p/bss/wpaper/15.html

References

- Ecoplan (2004). Verteilung des Wohlstands in der Schweiz. Bern: Eidgenössische Steuerverwaltung.
- Binder, D. A., M. S. Kovacevic (1995). Estimating Some Measures of Income Inequality from Survey Data: An Application of the Estimating Equations. Survey Methodology 21(2): 137-145.
- Kovacević, Milorad S., David A. Binder (1997). Variance Estimation for Measures of Income Inequality and Polarization – The Estimating Equations Approach. Journal of Official Statistics 13(1): 41-58.