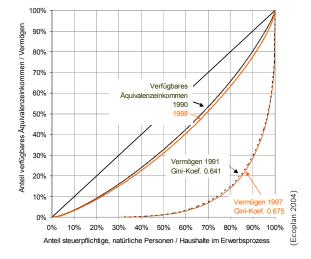
Assessing Inequality Using Percentile Shares

Ben Jann

University of Bern, ben.jann@soz.unibe.ch

Colloquia on Probability and Statistics Institute of Mathematical Statistics and Actuarial Science University of Bern, November 6, 2015



- ▶ http://www.youtube.com/watch?v=slTF_XXoKAQ
- https://www.ted.com/talks/dan_ariely_how_equal_do_we_ want_the_world_to_be_you_d_be_surprised

Outline

- Motivation
- Estimation of percentile shares
- The pshare Stata command
- Examples
- Small sample bias

Estimation of percentile shares

- Outcome variable of interest, e.g. income: Y
- Distribution function: $F(y) = Pr\{Y \le y\}$
- Quantile function: $Q(p) = F^{-1}(p) = \inf\{y | F(y) \ge p\}, p \in [0, 1]$
- Lorenz ordinates:

$$L(p) = \int_{-\infty}^{Q_p} y \, dF(y) / \int_{-\infty}^{\infty} y \, dF(y)$$

• Finite population form:

$$L(p) = \sum_{i=1}^{N} y_i \mathcal{I}\{y_i \leq Q_p\} / \sum_{i=1}^{N} y_i$$

• Percentile share: proportion of total outcome within quantile interval $[Q_{p_{\ell-1}}, Q_{p_{\ell}}], p_{\ell-1} \leq p_{\ell}$

$$S_{\ell} = L(p_{\ell}) - L(p_{\ell-1})$$

Estimation of percentile shares

• Estimation given sample of size *n*:

$$\begin{split} \widehat{S}_{\ell} &= \widehat{L}(p_{\ell}) - \widehat{L}(p_{\ell-1}) \\ \widehat{L}(p) &= (1 - \gamma)\widetilde{Y}_{j-1} + \gamma\widetilde{Y}_{j} \quad \text{where } \widehat{p}_{j-1}$$

- Standard errors
 - approximate standard errors can be obtained by the estimating equations approach as proposed by Binder and Kovacevic (1995)
 - supports complex survey data and joint estimation across subpopulations or repeated measures
 - ▶ alternative: bootstrap

Estimation of percentile shares: standard errors

• Let θ be a parameter interest and λ be a vector of nuisance parameters. Furthermore, let $u_{\theta}(y_i, \theta, \lambda)$ and $u_{\lambda}(y_i, \lambda)$ be estimating functions such that, in the (finite) population, θ and λ are the solutions to

$$U_{\theta}(\theta, \lambda) = \sum_{i=1}^{N} u_{\theta}(y_i, \theta, \lambda) = 0$$
 and $U_{\lambda}(\lambda) = \sum_{i=1}^{N} u_{\lambda}(y_i, \lambda) = 0$

• Following Kovacević and Binder (1997), the sampling variance of $\hat{\theta}$ can be approximated by a variance estimate of

$$\sum_{s} w_{i} u^{*}(y_{i}, \hat{\theta}, \hat{\lambda})$$

where w_i are sampling weights and

$$u^*(y_i, \theta, \lambda) = \left(-u_{\theta}(y_i, \theta, \lambda) + \frac{\partial U_{\theta}}{\partial \lambda} \left[\frac{\partial U_{\lambda}}{\partial \lambda}\right]^{-1} u_{\lambda}(y_i, \lambda)\right) \left[\frac{\partial U_{\theta}}{\partial \theta}\right]^{-1}$$

Estimation of percentile shares: standard errors

- For percentile shares, $\theta = S$ and $\lambda = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}$.
- The estimating functions are:

$$u_{\theta} = y_i \mathcal{I}\{y_i \le Q_2\} - y_i \mathcal{I}\{y_i \le Q_1\} - y_i S$$

$$u_{\lambda} = \begin{bmatrix} \mathcal{I}\{y_i \le Q_1\} - p_1\\ \mathcal{I}\{y_i \le Q_2\} - p_2 \end{bmatrix}$$

Hence:

$$u^* = \frac{y_i \mathcal{I}\{y_i \leq Q_2\} - y_i \mathcal{I}\{y_i \leq Q_1\} - y_i S}{-Q_2(\mathcal{I}\{y_i \leq Q_2\} - p_2) + Q_1(\mathcal{I}\{y_i \leq Q_1\} - p_1)}{\sum y_i}$$
$$= \frac{(y_i - Q_2)\mathcal{I}\{y_i \leq Q_2\} - (y_i - Q_1)\mathcal{I}\{y_i \leq Q_1\}}{+Q_2p_2 - Q_1p_1 - y_i S}$$
$$= \frac{-Q_2p_2 - Q_1p_1 - y_i S}{\sum y_i}$$

Estimation of percentile shares: some extensions

- Percentile share "density":
 - particularly useful for graphing

$$D_{\ell} = \frac{S_{\ell}}{p_{\ell} - p_{\ell-1}} = \frac{L(p_{\ell}) - L(p_{\ell-1})}{p_{\ell} - p_{\ell-1}}$$

Totals:

$$T_{\ell} = \sum_{i=1}^{N} y_i \mathcal{I}\{Q_{p_{\ell-1}} < y_i \le Q_{p_{\ell}}\} = S_{\ell} \cdot \sum_{i=1}^{N} y_i$$

- Averages:
 - again, useful for graphing
 - useful if you are also interested in levels, not just distribution

$$A_{\ell} = \frac{T_{\ell}}{(p_{\ell} - p_{\ell-1}) \cdot N}$$

Estimation of percentile shares: some extensions

- Contrasts:
 - useful for comparing distributions, e.g. changes over time
 - standard errors easily computed using delta method

$$S_{\ell}^A - S_{\ell}^B$$
 S_{ℓ}^A / S_{ℓ}^B $\ln(S_{\ell}^A / S_{\ell}^B)$...

- Using a different total:
 - useful, e.g., to analyze income components or subpopulation shares

$$L^{*}(p) = \sum_{i=1}^{N} y_{i} \mathcal{I}\{y_{i} \leq Q_{p}\} / T$$
$$S_{\ell}^{*} = L^{*}(p_{\ell}) - L^{*}(p_{\ell-1})$$

with T whatever you like it to be (e.g. the total of variable Z or the total across subpopulations)

Estimation of percentile shares: some extensions

- Using a different ordering variable ("concentration curve"; bivariate analysis):
 - compute shares while ordering by a different variable
 - useful for analyzing relations between variables (wealth and income, pre- and post-tax income, etc.)
 - standard errors: puhh ...let's just use bootstrap

$$L^{Z}(p) = \sum_{i=1}^{N} y_{i} \mathcal{I}\{z_{i} \leq Q_{p}^{Z}\} / \sum_{i=1}^{N} y_{i}$$
$$S_{\ell}^{Z} = L^{Z}(p_{\ell}) - L^{Z}(p_{\ell-1})$$

• Often a combination of using a different total and using a different ordering variable is useful (e.g. to analyze redistribution).

The pshare Stata command

- pshare estimate
 - estimates the percentile shares and their variance matrix
 - arbitrary cutoffs for the percentile groups
 - ▶ joint estimation across multiple outcome variables or subpopulations
 - shares as proportions, densities, totals, or averages
 - etc.
- pshare contrast
 - computes contrasts between outcome variables or subpopulations
 - ▶ differences, ratios, or log ratios
- pshare stack
 - displays percentile shares as stacked bar chart
- pshare histogram
 - displays percentile shares as histogram

Example: quintile shares (the default)

```
. sysuse nlsw88 (NLSW, 1988 extract)
```

. pshare estimate wage, percent

Percentile shares (percent)

Number of obs = 2,246

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
0-20 20-40 40-60 60-80 80-100	8.018458 12.03655 16.2757 22.47824 41.19106	.1403194 .1723244 .2068139 .2485367	57.14 69.85 78.70 90.44 65.94	0.000 0.000 0.000 0.000	7.743288 11.69862 15.87013 21.99085 39.96612	8.293627 12.37448 16.68127 22.96562 42.41599

- top 20% percent of the population get 41% of wages
- bottom 20% only get 8% of wages, etc.

Example: bottom 50%, mid 40%, and top 10%

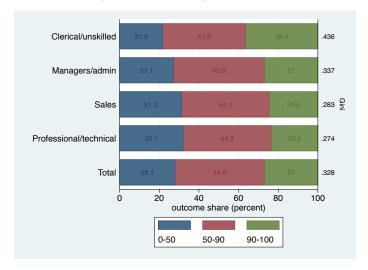
. pshare estimate wage, percent percentiles (50 90) $\,$

Percentile shares (percent) Number of obs = 2,246

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
0-50	27.59734	.3742279	73.74	0.000	26.86347	28.33121
50-90	45.86678	.4217771	108.75	0.000	45.03967	46.6939
90-100	26.53588	.682887	38.86	0.000	25.19672	27.87503

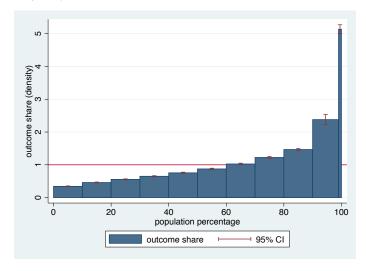
Example: stacked bars plot

- . pshare estimate wage if occ<=4, percent p(50 90) over(occ) total gini (output omitted)
- . pshare stack, values sort(gini tlast descending)



Example: histogram of densities

- . pshare estimate wage, density percentiles(10(10)90 99)
 (output omitted)
- . pshare histogram, yline(1)



Example: histogram of densities

Interpretation

- Take 100 dollars and divide them among 100 people who line up along the x-axis.
- ► The heights of the bars shows you how much each one gets.
- ▶ If all get the same, then everyone would get one dollar (red line).
- ▶ However, according to the observed distribution, the rightmost person would get five of the 100 dollars, the next 9 would get about two and a half dollars each, . . . , the bottom 10 only get 35 cents each.

Example: concentration curve

. pshare estimate hours, pvar(wage) density n(10) vce(bootstrap, reps(100)) (running pshare on estimation sample)

```
      Bootstrap replications (100)

      1
      2
      3
      4
      5

      50
      100
```

Percentile shares (density) Number of obs = 2,242 Replications = 100

hours	Observed Coef.	Bootstrap Std. Err.	Z	P> z	Normal [95% Conf.	-based Interval]
0-10	.8880782	.0210689	42.15	0.000	.8467839	.9293726
10-20	.9038126	.0200836	45.00	0.000	.8644495	.9431758
20-30	. 934641	.0227132	41.15	0.000	.890124	.979158
30-40	.9980166	.0169864	58.75	0.000	.9647239	1.031309
40-50	1.014016	.0166936	60.74	0.000	.9812967	1.046734
50-60	1.037906	.0205587	50.49	0.000	.9976118	1.0782
60-70	1.052623	.0156106	67.43	0.000	1.022027	1.083219
70-80	1.037115	.0149629	69.31	0.000	1.007788	1.066442
80-90	1.075704	.0156393	68.78	0.000	1.045052	1.106357
90-100	1.058088	.0169989	62.24	0.000	1.02477	1.091405

(percentile groups with respect to wage)

- the 10% with the highest wages work 5.8% longer hours
- the 10% with the lowest wages work 11.2% shorter hours

Some examples with "real" data

- Tax data from canton of Bern, Switzerland, 2002 and 2012
- individual level data from personal tax forms
- information on income components, deductions, assets, etc.
- units of analysis in following examples are "tax units"

. describe

Contains data from BE-02-12.dta

obs: 1,153,709 vars: 9 size: 39,226,106

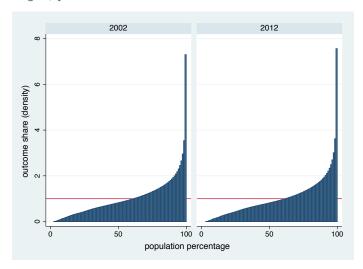
30 Oct 2015 18:44

variable name	storage type	display format	value label	variable label	
year	int	%9.0g		Year	
earnings	float	%9.0g		Labor market income	
capincome	float	%9.0g		Capital income	
transfers	float	%9.0g		Transfer income	
tax	float	%9.0g		Tax	
heritage	long	%10.0gc		Received heritage	
income	float	%9.0g		Total income	
aftertax	float	%9.0g		After tax income	
wealth	float	%9.0g		Net wealth	

Sorted by:

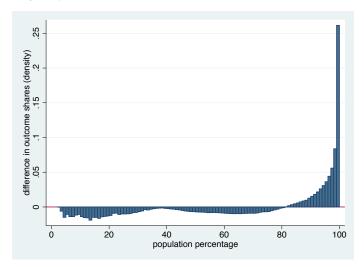
Distribution of total income in 2002 and 2012

- . pshare estimate income, density over(year) n(100) nose
 (output omitted)
- . pshare histogram, yline(1)



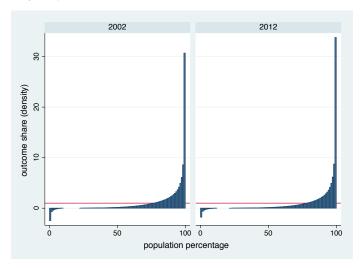
Change in income distribution from 2002 to 2012

- . pshare contrast
 (output omitted)
- . pshare histogram, yline(0)



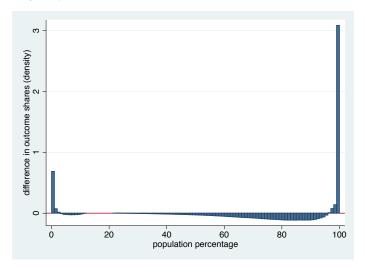
Distribution of net wealth in 2002 and 2012

- . pshare estimate wealth, density over(year) n(100) nose (output omitted)
- . pshare histogram, yline(1)



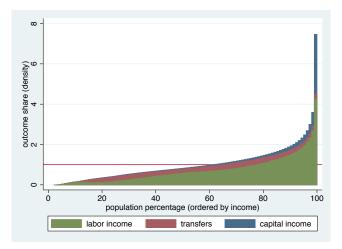
Change in wealth distribution from 2002 to 2012

- . pshare contrast
 (output omitted)
- . pshare histogram, yline(0)



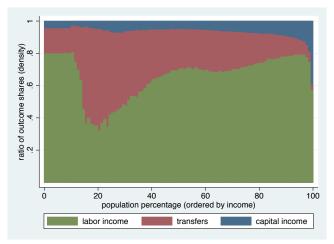
Income composition by income percentiles (2012)

```
generate earn_trans = earnings + transfers
quietly pshare estimate income earn_trans earnings, ///
pvar(income) base(income) density n(100) nose
pshare histogram, overlay yline(1) fintensity(100) color(*.8) ///
legend(order(3 "labor income" 2 "transfers" 1 "capital income") rows(1))
```



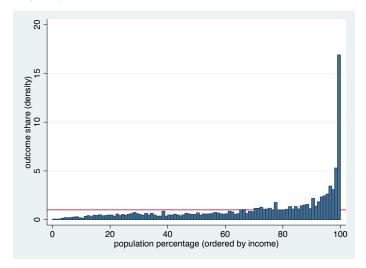
Income composition in relative terms (2012)

```
generate earn_trans_cap = income
. quietly pshare estimate income earn_trans_cap earn_trans earnings, ///
> pvar(income) base(income) density p(10(1)99) nose
. quietly pshare contrast income, ratio
. pshare histogram, overlay finten(100) color(*.8) base(0) ///
> legend(order(3 "labor income" 2 "transfers" 1 "capital income") rows(1))
```



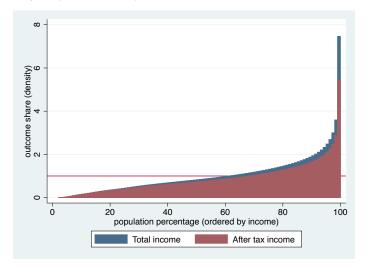
Received heritage by income percentiles (2012)

- . pshare estimate heritage, pvar(income) n(100) density nose
 (output omitted)
- . pshare histogram, yline(1)



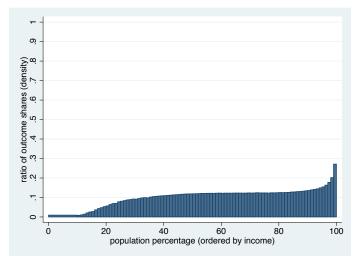
Pre-tax and post-tax income (2012)

- . pshare estimate income aftertax, base(income) pvar(income) n(100) density nose
 (output omitted)
- . pshare histogram, yline(1) overlay finten(100) color(*.8)



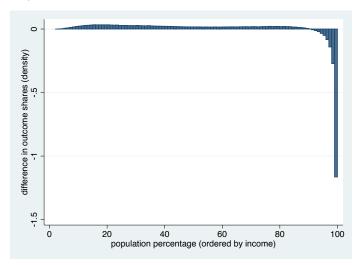
Tax rate by income percentiles (2012)

- . quietly pshare estimate income tax, base(income) pvar(income) ///
 > p(10(1)99) density nose
- . quietly pshare contrast income, ratio
- . pshare histogram, base(0) ylabel(0(.1)1)



"Winners" and "losers" from taxation (2012)

- . quietly pshare estimate income aftertax, pvar(income) n(100) density nose
- . quietly pshare contrast income
- . pshare histogram

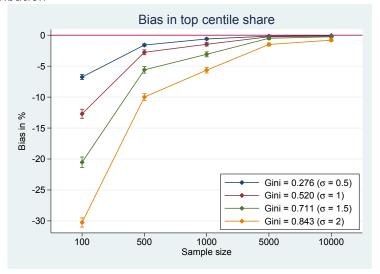


Small sample bias

- Percentile shares are affected by small sample bias.
- The top percentile share is typically underestimated.
- The problem is difficult to fix.
 - ► Corrections could be derived based on parametric assumptions.
 - Smoothing out the data by adding random noise can be an option, but this also requires parametric assumptions.
 - ▶ I evaluated a non-parametric small-sample correction using a bootstrap approach: the bias in bootstrap samples is used to derive correction factors for the main results.
 - ► This works very well in terms of removing bias (unless the distribution is extremely skewed).
 - ▶ **However:** MSE increases compared to uncorrected results!
 - Any ideas? Can Extreme Value Estimation be used to improve the estimates? Or would it be better to leave the point estimates as is and focus on obtaining bias-corrected Cls that have the correct size?

Small sample bias: how bad is the problem?

• Simulation: relative bias in top 1% share using a log-normal distribution



Software and paper

Software:

- . ssc install pshare
- . ssc install moremata
- . mata mata mlib index

• Paper:

Jann, Ben. 2015. Assessing inequality using percentile shares. University of Bern Social Sciences Working Papers No. 13. https://ideas.repec.org/p/bss/wpaper/13.html

References

- Ecoplan (2004). Verteilung des Wohlstands in der Schweiz. Bern: Eidgenössische Steuerverwaltung.
- Binder, D. A., M. S. Kovacevic (1995). Estimating Some Measures of Income Inequality from Survey Data: An Application of the Estimating Equations. Survey Methodology 21(2): 137-145.
- Kovacević, Milorad S., David A. Binder (1997). Variance Estimation for Measures of Income Inequality and Polarization – The Estimating Equations Approach. Journal of Official Statistics 13(1): 41-58.