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Definition of percentile shares
@ Outcome variable of interest, e.g. income: Y
e Distribution function: F(y) = Pr(Y <y)
@ Quantile function: Q(p) = F~1(p) = inf{y|F(y) > p}, p € [0,1]
@ Lorenz ordinates:

L(p) = /_ide(y)//_Zde(y)

Finite population form:

L(p) Z Zy, Yi<Qp

i=1Yi =1

Percentile share Sy

Sk = L(pk) — L(Pk-1)

Proportion of total outcome within quantile interval (Qp,_,, Qp,]
with px—1 < pk.
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Estimation
@ Estimation given sample of size n:
Sk = L(p) — L(px-1)

Z(p) =(1- 7)\7]_1 +’y\~/j where p;_1 < p < pj with p; = =

% Zy( where y(;y refers to ordered values
/ 1Yi s
v = f_# (linear interpolation)
Pj — Pj-1

@ Standard errors
» approximate standard errors can be obtained by the estimating
equations approach as proposed by Binder and Kovacevic (1995)
» supports complex survey data and joint estimation across
subpopulations or repeated measures
» alternative: bootstrap
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Standard errors

@ Let 6 be a parameter interest and A be a vector of nuisance
parameters. Furthermore, let ug(y;, 0, A) and ux(yj, A) be estimating
functions such that, in the (finite) population, 8 and X are the
solutions to

Up(6,\) = Z ug(yi,0,0) =0 and Uy(\) = Z ux(yi, A) =0

=1 =1

@ Following Kovacevi¢ and Binder (1997), the sampling variance of 8
can be approximated by a variance estimate of

ZW,‘U*(y,',QA, 3\)

where w; are sampling weights and
* OUg [ OU -1 ou, -1
i (o 4[] )24
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Standard errors

@ For percentile shares, 6 = S and A\ = [Q"l].
QP2

@ The estimating functions are:

up = yily<q, — Yily<q, —¥iS

ly<q, —P1
uy = 1 .
yiSQpQ P2
@ Hence:
o vily<q, —Yily<q, —¥iS — Qn(ly<q, — P2) + Qun(ly<q, — P1)
Vi
- (Vi = Qu)ly<q,, — Vi = Qp)Ly<q,, + QppP2 — Qpp1 — ¥iS
B Vi
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Percentile shares as densities, averages, or totals

@ Percentile share “density":
» particularly useful for graphing

Dy — Sk L(pk) — L(Pk—1)
k —_ prmy
Pk — Pk-1 Pk — Pk—-1

@ Totals:

N N

Te=> Yila, <y<qy =Sk Y ¥

i=1 i=1

@ Averages:

» again, useful for graphing
» useful if you are also interested in (absolute) levels, not just (relative)

distribution
v
Ay = 'k
(Pk — Pk—1) - N
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Contrasts and renormalization

@ Contrasts:

» useful for comparing distributions, e.g. changes over time
» standard errors easily computed using delta method

Sk =S¢ SK/SE In(S¢'/5¢)

@ Renormalization (using a different total):
» useful, e.g., to analyze income components or subpopulation shares

N
. 1
L(p) = = > vily<o,
i=1
Sk = L"(px) — L*(Pk-1)

with T whatever you like it to be (e.g. the total of variable Z or the
total across subpopulations)
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Concentration shares

@ Concentration shares:
» compute shares while ordering by a different variable

» useful for analyzing relations between variables (wealth and income,

pre- and post-tax income, etc.)

Lz(p) vil <Q?
Z/ 1 ’/Z; “

Sk = L%(px) — L7 (Px-1)

@ Often a combination of renormalization and using a different
ordering variable is useful (e.g. to analyze redistribution).
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The pshare Stata command

@ pshare estimate

estimates the percentile shares and their variance matrix

arbitrary cutoffs for the percentile groups

joint estimation across multiple outcome variables or subpopulations
shares as proportions, densities, totals, or averages

etc.

vV vy v vy

@ pshare contrast

» computes contrasts between outcome variables or subpopulations
» differences, ratios, or log ratios

@ pshare stack

» displays percentile shares as stacked bar chart
@ pshare histogram

» displays percentile shares as histogram
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Quintile shares (the default)

@ Distribution of hourly wages in the NLSW 1988 data:

. sysuse nlsw88
(NLSW, 1988 extract)

. pshare estimate wage, percent

Percentile shares (percent)

Number of obs

2,246

wage Coef. Std. Err. [95% Conf. Intervall
0-20 8.018458  .1403194 7.743288 8.293627
20-40 12.03655 .1723244 11.69862 12.37448
40-60 16.2757 .2068139 15.87013 16.68127
60-80 22.47824 .2485367 21.99085 22.96562
80-100 41.19106  .6246426 39.96612 42.41599

» top 20% percent of the population get 41% of wages

» bottom 20% only get 8% of wages, etc.
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Bottom 50%, mid 40%, and top 10%

. pshare estimate wage, percent percentiles(50 90)

Percentile shares (percent) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall

0-50 27.59734 .3742279 26.86347 28.33121

50-90 45.86678 L4217771 45.03967 46.6939

90-100 26.53588 .682887 25.19672 27.87503
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Stacked bars plot

. pshare estimate wage if occ<=4, percent p(50 90) over(occ) total gini
(output omitted)

. pshare stack, values sort(gini tlast descending) ///
> legend(order(1 "bottom 50" 2 "mid 40" 3 "top 10") nostack)

Clerical/unskilled 436
Managers/admin 337
Sales 283 2
Professional/technical 274
Total .328
T T T T T 1
0 20 40 60 80 100

outcome share (percent)

I bottom 50 [ mid40 [ top 10
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Palma ratio

@ By the way, you can also use pshare to compute summary inequality
measures that are based on percentile shares, such as, e.g., the

Palma ratio (ratio of top 10 to bottom 40).

. pshare estimate wage if occ<=4, percent p(40 90) over(occ) total

(output omitted)

nlcom (Clerical:
(Managers:
(Sales:

V V.V V V.

_b[4:90-100]
_b[2:90-100]
_b[3:90-100]

(Professional: _b[1:90-100]

/ _bl[4:0-401)
/ _b[2:0-40])
/ _b[3:0-40])
/ _b[1:0-40])

/17
/77
/77
/77

(Total: _b[total:90-100] / _bl[total:0-401) ///
, noheader

wage Coef. Std. Err. z P>|z| [95% Conf. Intervall
Clerical 2.249477 .3525574 6.38 0.000 1.558477 2.940477
Managers 1.396125 .1167446 11.96 0.000 1.16731 1.62494
Sales 1.051786 .0823413 12.77 0.000 .8903995 1.213171
Professional 1.007814 .0911951 11.05 0.000 .8290749 1.186553
Total 1.316197 .0615441 21.39 0.000 1.195573 1.436821
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Histogram of densities

. pshare estimate wage, density percentiles(10(10)90 99)

Percentile shares (density)

Number of obs =

2,246

wage Coef. Std. Err. [95% Conf. Intervall

0-10 .3426509 .0070215 .3288816 .3564202
10-20 .4591949 .0081384 4432352 .4751546
20-30 .5544608 .0084268 .5379357 .5709858
30-40 .6491941 .009346 .6308663 .6675219
40-50 . 7542334 .0102301 .7341719 . 7742948
50-60 .8733366 .0113189 .85114 .89556333
60-70 1.024571 .0128412 .9993888 1.049752
70-80 1.223253 .0136742 1.196438 1.250069
80-90 1.465518 .0149372 1.436226 1.49481
90-99 2.377868 .0794248 2.222114 2.533622
99-100 5.135065 .0696951 4.998392 5.271739

. pshare histogram, yline(1) xlabel(0(10)100)
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Histogram of densities

4
1

3
1

outcome share (density)
2
1

T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
population percentage

I outcome share +—— 95% Cl
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Histogram of densities: Interpretation

@ Take 100 dollars and divide them among 100 people who line up
along the X axis.

@ The height of the bars shows you how much each one gets.
o If all get the same, then everyone would get one dollar (red line).

@ However, according to the observed distribution, the rightmost
person would get five of the 100 dollars, the next 9 would get about
two and a half dollars each, ..., the bottom 10 only get 35 cents
each.

@ Stated differently, the top person gets 5 times the average, the
bottom 10 only get about a third of the average.
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Contrasts
@ Distribution of wages among unionized and non-unionized workers:

. pshare estimate wage, n(10) density over(union) histogram(yline(1) x1label(0(10)100))
(output omitted)

nonunion union

2
L

1
|

outcome share (density)

— T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
population percentage
I outcome share  —— 95% Cl
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Contrasts

@ How does the distribution differ between unionized and
non-unionized workers?

. pshare con

trast O

Differences in percentile shares (density)

0: union = nonunion
1: union = union

Number of obs

1,878

wage Coef. Std. Err. t P>t [95% Conf. Intervall
1
0-10 .0429197 .016305 2.63 0.009 .0109419 .0748975
10-20 .0528084 .0177041 2.98 0.003 .0180866 .0875301
20-30 .0743417 .0204516 3.64 0.000 .0342315 .1144519
30-40 .0765406 .018892 4.05 0.000 .0394891 .1135922
40-50 .0798209 .0190538 4.19 0.000 .0424521 .1171897
50-60 .0763097 .0204552 3.73 0.000 .0361924 .116427
60-70 . 0475279 .0211824 2.24 0.025 .0059843 .0890715
70-80 -.0526677  .0242038 -2.18 0.030 -.1001369  -.0051984
80-90 -.1487654  .0269943 -56.51  0.000 -.2017074  -.0958234
90-100 -.2488358 .094742 -2.63 0.009 -.4346464 -.0630251

(contrasts with respect to union = 0)
. pshare histogram, yline(0) xlabel(0(10)100)
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Contrasts

0
1 |

-1

-2

difference in outcome shares (density)
-3
1

-4

T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
population percentage

[ difference in outcome shares ~ —— 95% Cl

» bottom 70% percent are relatively better off if unionized
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Contrasts

@ How do results change if we take into account that unionized

workers have higher wages on average than non-unionized workers?

. pshare estimate wage, n(10) density over(union) contrast(0) normalize(0:)

Differences in percentile shares (density)

0: union = nonunion
1: union = union

Number of obs

= 1,878

wage Coef.  Std. Err. t P>|t| [95% Conf. Intervall
1
0-10 .126848 .0193006 6.57  0.000 .0889951 .1647009
10-20 .1645575 .0236112 6.97 0.000 .1182506 .2108645
20-30 .2107276 .0304829 6.91 0.000 .1509437 .2705115
30-40 2344474 .0301437 7.78 0.000 .1753287 .293566
40-50 .258802 .0325174 7.96  0.000 .1950281 .322576
50-60 .2782536 .0371205 7.50 0.000 .2054518 .3510553
60-70 .2741746 .0384939 7.12 0.000 .1986792 .34967
70-80 .1970798 .0435501 4.53 0.000 .111668 .2824915
80-90 .1343646 . 0485359 2.77 0.006 .0391746 .2295547
90-100 .1605684 1482708 1.08 0.279 .1302246 .4513614

(shares normalized with respect to total for union

(contrasts with respect to union = 0)
. pshare histogram, yline(0) xlabel(0(10)100)
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Contrasts

4
1

2
1

difference in outcome shares (density)
0
1

0 10 20 30 40 50 60 70 80 90 100
population percentage

I difference in outcome shares ~ —— 95% Cl

» everyone is absolutely better off if unionized (between about 15% and
25% of average nonunion wages)
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Contrasts

@ How high are the benefits of unionization in relative terms at

different positions in the distribution?

. pshare estimate wage, n(10) average over(union) contrast(0, ratio)

Ratios in pe

rcentile shares (average)

0: union = nonunion
1: union = union

Number of obs

= 1,878

wage Coef. Std. Err. t P>|t| [95% Conf. Intervall
1
0-10 1.344201 .05650809 24 .40 0.000 1.236174 1.452227
10-20 1.33242 .0497931 26.76 0.000 1.234764 1.430076
20-30 1.354596 .0521801 25.96 0.000 1.252259 1.456934
30-40 1.336087  .0445377 30.00 0.000 1.248739 1.423436
40-50 1.32447 .0417097 31.756  0.000 1.242668 1.406273
50-60 1.304536 .0412891 31.60 0.000 1.223559 1.385513
60-70 1.257784 .0374506 33.59 0.000 1.184335 1.331233
70-80 1.154327  .0350066 32.97 0.000 1.085671 1.222983
80-90 1.087433  .0318485 34.14  0.000 1.024971 1.149895
90-100 1.071177 .0662822 16.16 0.000 .9411828 1.201172

(contrasts with respect to union = 0)
. pshare histogram, yline(1) xlabel(0(10)100)
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Contrasts

1.6

1.4
1

1
|

ratio of outcome shares (average)
1.2

0 10 20 30 40 50 60 70 80 90 100
population percentage

[ ratio of outcome shares ' 95% Cl

» bottom 50% of unionized are about 30% better off than bottom 50%
of non-unionized; at the top the advantage shrinks to 10%
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Concentration shares

@ How are working hours related to wages? Do people with high hourly
wages work more, as economic theory would predict?

. pshare estimate hours, n(10) density pvar(wage)

Percentile shares (density) Number of obs = 2,242
hours Coef.  Std. Err. [95% Conf. Intervall
0-10 .8880782 .0222773 .8443919 .9317646
10-20 .9038126 .0205245 .8635637 .9440616
20-30 .934641 .0188478 .8976801 .971602
30-40 .9980166 .0159431 .9667519 1.029281
40-50 1.014016 .0162895 .9820715 1.04596
50-60 1.037906 .0170757 1.00442 1.071392
60-70 1.052623 .0153487 1.022524 1.082722
70-80 1.037115 .0149871 1.007725 1.066505
80-90 1.075704 .0151754 1.045945 1.105464
90-100 1.058088 .0169731 1.024803 1.091372

(percentile groups

with respect to wage)

. pshare histogram, base(1) yline(1) xlabel(0(10)100)
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Concentration shares

11

1.05
1

1
|

outcome share (density)
.95

9
1

0 10 20 3 40 5 6 70 80 90 100
population percentage (ordered by wage)

I outcome share ' 95% ClI

» the 10% with the highest wages work 5.8% longer hours than average
» the 10% with the lowest wages work 11.2% shorter hours than
average
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Application to “real” data

@ tax data from canton of Bern, Switzerland, 2002 and 2012

@ individual level data from personal tax forms

@ information on income components, deductions, assets, etc.

@ units of analysis in following examples are (natural) “tax units”
°

see the project website for more information: http://inequalities.ch

. describe
Contains data from BE-02-12.dta

obs: 1,153,709

vars: 10 28 Apr 2016 15:17
size: 48,455,778

storage  display value

variable name type format label variable label
year int %9.0g Year
hhid double %10.0g Household ID
earnings float  %9.0g Labor market income
capincome float  %9.0g Capital income
transfers float  %9.0g Transfer income
tax float  %9.0g Tax
heritage long %10.0gc Received heritage
income float  %9.0g Total income
aftertax float  %9.0g After tax income
wealth float  %9.0g Net wealth
Sorted by:
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Distribution of total income in 2002 and 2012

. pshare estimate income, n(100) nose density over(year)
(output omitted)
. pshare histogram, yline(1) xlabels(0(10)100)

2002 2012

outcome share (density)
4
|

— T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
population percentage
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Change in income distribution from 2002 to 2012

. pshare contrast
(output omitted)
. pshare histogram, yline(0) xlabels(0(5)100)

difference in outcome shares (density)

T T T T T T T T T T T T T T T T T T T T T
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage
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Distribution of net wealth in 2002 and 2012

. pshare estimate wealth, n(100) nose density over(year)
(output omitted)
. pshare histogram, yline(1) xlabels(0(10)100)

2002 2012

20 30
| |

outcome share (density)
10
|

o+ r r

— T T T T T T T T T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100 O 10 20 30 40 50 60 70 80 90 100
population percentage
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Change in wealth distribution from 2002 to 2012

. pshare contrast
(output omitted)

. pshare histogram, yline(0) xlabels(0(5)100)

2
L

1
L

difference in outcome shares (density)

ﬁ—"_

T T T T T T T T T T T T T T T T T T T T T
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage
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Income composition by income percentiles (2012)

. keep if year==2012

(553,976 observations deleted)

. drop year

. drop if hhid>=.

(11,720 observations deleted)

. collapse (sum) earnings-wealth, by(hhid) fast // generate households

. generate earn_trans = earnings + transfers

. quietly pshare estimate income earn_trans earnings, n(100) nose density ///

> pvar (income) normalize(income)
. pshare histogram, overlay yline(1) xlabels(0(5)100) fcolor(%100) fintensity(70) ///
> legend(order (3 "labor income" 2 "transfers" 1 "capital income") rows(1))
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Income composition by income percentiles (2012)

o0 -

6
1

outcome share (density)
4
1

2
1

T T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage (ordered by income)

[ laborincome [ transfers [ capital income
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Income composition in relative terms (2012)

. generate earn_trans_cap = income

. quietly pshare estimate income earn_trans_cap earn_trans earnings, ///
> p(10(1)99) nose density pvar(income) normalize(income)

. quietly pshare contrast income, ratio

. pshare histogram, overlay xlabels(0(5)100) fcolor(%100) fintensity(70) base(0) ///
> legend(order (3 "labor income" 2 "transfers" 1 "capital income") rows(1))
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Income composition in relative terms (2012)
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Received bequests by income percentiles (2012)

. pshare estimate heritage, n(100) nose density pvar(income)

(output omitted)
. pshare histogram, yline(1) xlabels(0(5)100)

wn

puig

10
Il

outcome share (density)
5
1

T T T T T T T T T T T T T T T T T T T T T
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population percentage (ordered by income)
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Pre-tax and post-tax income (2012)

. pshare estimate income aftertax, n(100) nose density normalize(income) pvar(income)
(output omitted)

. pshare histogram, yline(1) overlay xlabels(0(5)100) fcolor(%100) fintensity(70)

0

4 6
1 1

outcome share (density)

2
1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage (ordered by income)

I (sum)income [ (sum) aftertax
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Tax rate by income percentiles (2012)

. pshare estimate income tax, p(5(1)99) nose density ///
> normalize(income) pvar(income)

(output omitted)
. pshare contrast income, ratio
(output omitted)
. pshare histogram, base(0) ylabel(0(.05).25) xlabels(0(5)100)

[re]
«

ratio of outcome shares (density)

T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage (ordered by income)
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“Winners” and “losers” from taxation (2012)

. pshare estimate income aftertax, n(100) nose density pvar(income)
(output omitted)

. pshare contrast income
(output omitted)

. pshare histogram, yline(0) xlabels(0(5)100)

!

-2

!

-4

-6

!

-8

!

difference in outcome shares (density)

T T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
population percentage (ordered by income)
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Small sample bias

@ Percentile shares are affected by small sample bias (estimates of
Lorenz ordinates have the same problem).

@ The top percentile share is typically underestimated.

@ The problem is difficult to fix.

» Corrections could be derived based on parametric assumptions.

» Smoothing out the data by adding random noise can be an option,
but this also requires parametric assumptions.

» | evaluated a non-parametric small-sample correction using a
bootstrap approach: the bias in bootstrap samples is used to derive
correction factors for the main results.

» This works very well in terms of removing bias (unless the distribution

is extremely skewed).

However: MSE increases compared to uncorrected results!

v
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Small sample bias: how bad is the problem?

@ Simulation: relative bias in top 1% share using a log-normal

distribution

Bias in top centile share

-5

-10-

-154

Bias in %

-204

-254

-3041

——— Gini=0.276 (5 = 0.5)
—+— Gini=0.520 (c=1)
——+— Gini=0.711 (6= 1.5)
——+— Gini=0.843 (0 = 2)
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Small sample bias: recommendations

@ The simulation results suggest that for moderately skewed
distributions (such as the income distribution with a typical Gini
coefficient between around 0.3 and 0.5) there should be a minimum
of about 10 observations in the top group to keep the error within
acceptable bounds of just a few percent.

» For example, to estimate the top 0.1% share a sample size of at least
10000 observations would be required.

@ For accurate estimation of top shares in extremely skewed
distributions (such as the wealth distribution with a Gini coefficient
as high as 0.8 or event 0.9) minimum sample size requirements may
be considerably higher (such as 50 or even 100 observations in the

top group).
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Conclusions

@ | my opinion, percentile shares are an excellent method to analyze —
and visualize — income and wealth distributions.

@ The pshare package in Stata (Jann 2016a) provides powerful tools
to compute and graph percentile shares in various flavors and also
allows comparing distributions between groups or analyzing relations
between variables by means of concentration shares.

@ To install pshare in Stata, type

. ssc install pshare

@ Should you still be attached to classical Lorenz and concentration
curves, there is a companion command with similar functionality
called lorenz (Jann 2016b).
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